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Abstract. We study the effect on quantum spectra of the existence of small circular disks in
a billiard system. In the limit where the disk radii vanish there is no effect, however this limit
is approached very slowly so that even very small radii have comparatively large effects. We
include diffractive orbits which scatter off the small disks in the periodic orbit expansion. This
situation is formally similar to edge diffraction except that the disk radii introduce a length scale
in the problem such that for wavelengths smaller than the order of the disk radius we recover the
usual semiclassical approximation; however, for wavelengths larger than the order of the disk
radius there is a qualitatively different behaviour. We test the theory by successfully estimating
the positions of scattering resonances in geometries consisting of three and four small disks.

The presence of discontinuities in classical Hamiltonian systems implies the necessity of
a closer study of the quantum mechanics when doing semiclassical periodic orbit theory
[1] and has been the theme of numerous recent papers [2–9]. The approach is to study
the quantum scattering problem near the discontinuity, and to combine this with classical
information about classical trajectories away from the discontinuity to find global quantities
such as the trace of the quantum Green function. In doing so, we maintain the local–global
duality inherent in periodic orbit theory. In this paper we discuss one class of discontinuity,
that of small circular scatterers. In the context of the Sinai billiard, the perturbative effect
of a small disk in the quantum [10] and classical problems [11, 12] was studied, but not
with a scattering interpretation. By small, we mean smaller than the typical wavelength in
the problem. The opposite limit, of scatterers much larger than a typical wavelength, can
be evaluated using classical periodic orbits reflecting off the disk plus creeping diffraction
to account for the discontinuity associated with glancing orbits [2–4, 7].

We will analyse billiard systems in two dimensions and therefore seek the Green function
of the Helmholtz equation

(∇2 + k2)ψ = 0 (1)

with some specified boundary conditions. In the absence of any boundaries, the Green
function between a source atx ′ and a receiver atx is

Gf (x, x
′, k) = − i

4
H
(+)
0 (k|x − x ′|)

≈ 1√
8πk|x − x ′|ei(k|x−x ′|−3π/4). (2)
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The second line, which is asymptotic ink|x − x ′|, will be useful later in the discussion. In
the exterior of a disk of radiusa with Dirichlet boundary conditions, the first line of (2) is
modified to

G(x, x ′, k) = − i

8

∞∑
m=−∞

eim(θ−θ ′)H (+)
m (kx ′)

(
H(−)
m (kx)− H(−)

m (ka)

H
(+)
m (ka)

H (+)
m (kx)

)
x ′ > x

= Gf (x, x
′, k)+ i

4

∞∑
m=−∞

eim(θ−θ ′) Jm(ka)

H
(+)
m (ka)

H (+)
m (kx ′)H (+)

m (kx) (3)

whereθ and θ ′ are the polar angles of pointsx andx ′ as measured from the disk centre.
The first line follows from using Graf’s addition formula forH(+)

0 (z) [13] together with
the S-matrix of the disk scattering problem. The second line can be seen to equal the first
by another application of Graf’s addition formula and the expansion ofJm(z) in terms of
H(±)
m (z). If x > x ′, one must interchangex with x ′ and θ with θ ′ in the first line of (3)

but the second line remains unchanged. This has the appealing structure of being the free
space Green function plus a correction. Whether the correction is small or large depends
on the geometry of the problem and on the wavenumberk.

We now make the assumption that the disk radiusa is much smaller than the typical
distance to pointsx and x ′ from the disk. We further assume the semiclassical condition
kx, kx ′ � 1. Recalling the asymptotic relationH(+)

m (z) ≈ exp(−imπ/2)H (+)
0 (z) (assuming

|z| � 1 and|z| > m), we obtain
∞∑

m=−∞
eim(θ−θ ′) Jm(ka)

H
(+)
m (ka)

H (+)
m (kx ′)H (+)

m (kx)

≈ H
(+)
0 (kx ′)H (+)

0 (kx)

∞∑
m=−∞

eim(θ−θ ′−π) Jm(ka)

H
(+)
m (ka)

. (4)

Although the asymptotic form used forH(+)
m (z) breaks down form > |z|, this is not

important in (4) since the conditionx, x ′ � a implies that the breakdown begins for values
of m such that the factorJm(ka)/H(+)

m (ka) is already very small. We then conclude that in
the presence of a small disk centred at positionξ , the Green function between two points
separated by an angleφ as measured fromξ is approximately

G(x, x ′, k) ≈ Gf (x, x
′, k)+ d(φ)Gf (x, ξ, k)Gf (ξ, x

′, k) (5)

where we have defined a diffraction constant

d(φ) = −4i
∞∑

m=−∞
eim(φ−π) Jm(ka)

H
(+)
m (ka)

. (6)

Using the relationsJ−m(z) = (−1)mJm(z) andH(+)
−m (z) = (−1)mH(+)

m (z), we can replace
the exponentials in this expression by cosines thereby displaying the time-reversal property
d(φ) = d(−φ). Furthermore, this sum converges since the ratioJm(ka)/H

(+)
m (ka) decreases

factorially with m for m > |ka|. In the more general case of a non-circular but small
scatterer, we must insert the fullS matrix into equation (3). The analysis remains largely
unchanged; in particular, equation (5) still applies, however the diffraction constant is then
a function of both angles and not just their difference. We then obtain

d(θ, θ ′) = 2
∞∑

m,m′=−∞
ei(m′θ−mθ ′−(m+m′)π/2)Tmm′ (7)

where we have defined theS matrix throughSmm′ = δmm′ − iTmm′ .
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The Green function (5) has a direct contribution as if there were no disk plus a
contribution in the form of a product of Green functions which arises from scattering off
the disk. This is the same structure which exists in the presence of vertices [14] where we
obtain the diffraction constant from the solution of the wedge scattering problem solved by
Sommerfeld [15]. Despite similar forms, there are two aspects of the problems which are
quite different. The small disk diffractor has no internal orientation but does have an internal
length scale,a. In contrast, a wedge has an internal orientation, as given by the direction
of its normal, but has no internal length scale. The existence of an orientation means that
there are choices of incoming and outgoing angles for which the vertex diffraction constant
diverges whereas this never happens for the disk. On the other hand, the lack of an internal
length scale means that the vertex diffraction constant is independent ofk whereas for the
disk it is clearly k-dependent. The systems do share the property that we can trivially
extend them to include problems with a potentialV (x) [9]. We assume that the potential
does not change much in a wavelength and thereby compute the diffraction constant with
k = √

2m(E − V (ξ))/h̄, the wavenumber at the disk. Equations (5) and (6) then apply
whereGf is the Van-Vleck approximation to the Green function for that potential in the
absence of a disk.

So far we have made no assumption on the value ofka. For ka � 1 we recover
the expected geometrical structure, as we discuss below. There is qualitatively different
behaviour forka � 1 and a cross-over forka ∼ 1. In the limit ka → 0 we note
that Jm(ka)/H(+)

m (ka) ≈ iπ(ka/2)2m/m!(m − 1)! for m 6= 0 and only them = 0 term
contributes significantly. We call this the s-wave limit. From the approximations

J0(ka) ≈ 1 Y0(ka) ≈ 2

π

(
log

(
ka

2

)
+ γe

)
(8)

valid for small ka (where γe = 0.577. . . is Euler’s constant), we derive the s-wave
approximation

d ≈ 2π

log(2/ka)− γe + iπ/2
(9)

which is independent of scattering angleφ. As ka → 0, the denominator of (9) grows
logarithmically so that the diffraction constant goes to zero and the disk has no effect,
which is reasonable. However, this happens very slowly so that even for very small values
of ka there is still an appreciable effect, as we will demonstrate.

It might seem surprising that the diffraction constant vanishes asa → 0 since we are
demanding that the wavefunction vanish at a point, and it might be thought that this should
have some effect. That this is not so can be understood with the example of an annulus
in which the central disk is very small. Although the eigenfunction does indeed vanish
on the disk, it increases very rapidly so that within a small distance the eigenfunction
is indistinguishable from one in which there were no central disk. In this sense, the
wavefunctions (and eigenvalues) are virtually indistinguishable from those corresponding to
the disk-free system. In [16], the author argues that disks of zero radius continue to have an
effect, but the system he was considering was equivalent to an infinitely thin line charge in
an electromagnetic waveguide (see also [17] for the three-dimensional generalization.) In
his language, our disk is uncharged and there is no contradiction between his conclusions
and ours. The difference is in the order one takes the limitsa → 0 andk → ∞. In [16],
one starts with the first limit (while maintaining a finite interaction) whereas we consider the
second limit while holdinga small but fixed. As a result, the problems are quite distinct.
For example, in the short wavelength limit the disks considered here will start having a
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large, classical effect (i.e. whenka is of order 1) whereas in the system mentioned above
the effect of the scatterer vanishes for largek [18].

In a system composed of several scattering centres, the Green function between points
labelledx ′ and x will receive contributions from paths which diffract several times. The
contribution of one such path, labelledp, is a simple generalization of the second term of
(5) and equals

Gp(x, x
′, k) ≈ Gf (x, ξn, k)dn

{ n−1∏
j=1

Gf (ξj+1, ξj , k)dj

}
Gf (ξ1, x

′, k). (10)

The quantitiesξj indicate the scattering points—in this case the centres of the disks with
the subscriptsj indicating the order in which they are encountered for that path. The path
is composed ofn scatterers with a diffraction constantdj associated with each one. The
details of the trace integral are worked out in [3, 6, 9]; here we simply sketch the derivation.
We stress that all of these calculations are to leading order in ¯h (or 1/k in this context.) The
criterion of stationary phase selects periodic orbits which are everywhere classical except
at the singularities where they diffract by an arbitrary angle. A periodic orbit is composed
of n classical segments connected byn diffractions.

If we identify x with x ′ in (10) we see that it is a closed cycle of Green functions
in which the segment between the scatterersξn and ξ1 is ‘cut’ by the pointx which lies
between them. In general, the trace integral associated with a periodic orbit labelledγ will
be evaluated by integrating over all choices ofx. This means that we must allowx to cut
open the cycle of Green functions between any two consecutive scatterers—each possibility
physically corresponds tox lying between that pair of scatterers. For this purpose, we
define a parallel coordinatez which runs along the periodic orbit fromξn to ξ1 to ξ2 etc
until it returns toξn. When z is betweenξi and ξi+1, the pointx is between these two
scatterers (where we identifyn + 1 with 1). At each point along the orbit, we define a
transverse coordinatey so thatx is parametrized by the pair(y, z), as for geometric orbits
[1]. The integrand of the trace integral is similar to (10) but where we cut the cycle of
Green functions betweenξi and ξi+1 (as governed byz) rather than betweenξn and ξ1 so
that the trace integral associated withγ is∮

dz
∫

dyGγ (x, x, k) =
n∑
i=1

∫ ξi+1

ξi

dz
∫ ∞

−∞
dy Gf (x, ξi, k)di

×
{ ∏
j 6=i

Gf (ξj+1, ξj , k)dj

}
Gf (ξi+1, x, k). (11)

Due to stationary phase, only those points close to the orbit contribute significantly so that
to leading order, all the diffraction constantsdj are independent ofx and can be considered
invariant properties of the periodic orbit. Therefore, the onlyx dependence is in the two
Green functions connectingx to the adjacent scatterers; all other factors in the integrand are
constant. For each value ofz, we evaluate the transverse integral

∫
dy by stationary phase;

this yields a factor which is independent ofz and is proportional to the Green function
between the two adjacent scatterers. Combining this with all the constant factors in the
integrand gives the product of the closed cycle of Green functions and diffraction constants
from one scatterer to the next,

∏n
j=1Gf (ξj+1, ξj , k)dj . We get this same invariant factor

after doing they integral at any pointz along any segment of the periodic orbit so there
is no explicitz dependence remaining. The integral parallel to the orbit

∮
dz = Lγ is then

simply the length of the periodic orbit, as also happens for geometric orbits. The final result
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is

gγ (k) ≈ −i
Lγ

2k

{ nγ∏
j=1

Gf (ξj+1, ξj )dj

}

≈ −i
Lγ

2k

{ nγ∏
j=1

dj√
8πkLj

}
γ

exp{i(kLγ − 3nγ π/4)}. (12)

We have made use of (2) whereLj = |ξj+1 −ξj |. This expression involves one fewer Green
function than (10). (The additional Green function contributes a constant proportional to
e−i3π/4/

√
k which combines with a factor proportional to eiπ/4/

√
k from the stationary

phase integral to give the prefactor of−i/2k.) Equation (12) is the contribution of a single
diffractive periodic orbit; in general we must sum over all such orbits as well as over
all purely geometric orbits to get the total trace. For this reason, we have introduced the
subscriptγ in the indexnγ in the above equation.

Following [3, 4, 8] we write down the semiclassical diffractive zeta function [19] whose
zeros approximate the exact quantum resonances,

ζ−1
diff =

∏
γ

(1 − tγ ) (13)

where

tγ =
{ n∏
j=1

dj√
8πkLj

}
γ

exp{i(kLγ − 3nγ π/4)}. (14)

This results follows from the semiclassical approximation

dtγ
dk2

≈ iLγ
2k
tγ (15)

so that the sum over all diffractive orbits in (12) is the logarithmic derivative of the zeta
function (13). (We take the derivative with respect tok2 since the trace of the Green function
(12) is properly thought of as a function ofk2 and not ofk.) The product is over just
the primitive orbits; their repeats have already been summed. In a system with coexisting
geometric and diffractive orbits, we need to multiply the corresponding zeta functions [3, 4].
The result is a purely formal product which must be regulated differently for scattering [20–
22] and bound [23] problems so that its zeros are the semiclassical eigenvalues of the full
problem and not the zeros of the individual terms in the product. The diffractive zeta
function (13) involves no additional product as happens for geometric orbits [24], resulting
in there being only leading resonances in scattering calculations [5, 8].

We now specialize the discussion to scattering geometries featuring three and four small
disks arranged symmetrically in the plane [25–32]. We first discuss the three disk problem
as shown in figure 1(a). (We exaggerate the size of the disks to make the discussion clearer.)
Starting from one of the disks, there are two distinct processes. We can go to one of the
other two disks and either scatter back to the original disk or scatter on to the third disk.
We assign these two processes the symbols 0 and 1, respectively [29]. The weights are
t0 = d(0)u and t1 = d(π/3)u where the factor

u = 1√
8πkR

exp{i(kR − 3π/4)} (16)

is common to both orbits andR � a is the inter-disk spacing.
Notice that there is a C3v symmetry to this problem [27–30] consisting of the identity,

rotations by±2π/3 and reflections through the three symmetry axes. This group has three
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Figure 1. (a) The configuration space of the three-disk problem with the fundamental domain
indicated at the top right. The arrow A indicates the unique direction in which a trajectory can
leave the disk and ultimately return and the arrow A’ is its mirror image. (b) The corresponding
Markov graph with a single node A and the two processes which connect it to itself.

irreducible representations which are calledA1, A2 and E. We can make use of this
symmetry by considering dynamics in the fundamental domain [33], which in this case is
a wedge consisting of one-sixth of the plane as indicated in figure 1(a). One does this by
following a trajectory and using the symmetry operations to map the trajectory back into
the fundamental domain whenever it crosses a boundary. In the fundamental domain of
the three-disk problem, there is only one half-disk. A trajectory can leave this half-disk in
only one direction, which is labelled A. Upon encountering the border of the fundamental
domain, a reflection operation is applied so that the trajectory returns to the disk, where it
has two choices. It can either diffract back onto A or it can diffract into the direction A’.
In the second case, we apply a reflection operator again to map this back onto A. These
two possibilities are both diffractive periodic orbits of the fundamental domain and have
the weightst0 and t1 discussed above. Each orbit has an additional group theoretic weight
given by the characters (in the representation being considered) of the group operations
needed to keep the orbit in the fundamental domain [30].

In general there are longer periodic orbits as labelled by whether they back-scatter or
forward-scatter at each encounter with the disk. These can be then labelled by a binary
sequence of 0’s and 1’s. However, there is a multiplicative property to the weights such
that the weight of any long orbit is equal to the product of the weights of shorter cycles.
For examplet001 = t20 t1 since they both equald2

0d1u
3. This property means that we can

represent the zeta function as being the determinant of a Markov graph [34], which is drawn
in figure 1(b). The single node in the graph, A, is connected to itself by the processes 0
and 1 described above.

All the characters of the totally symmetric representationA1 are unity, which simplifies
its discussion. To find its zeta function, we simply read off from the Markov graph all
nonintersecting closed loops. In this case there are only two and we get the simple result

ζ−1
A1

= 1 − t0 − t1. (17)

This formula agrees with the result found in [29, 30] for the special case where all the higher
order ‘curvature corrections’ [20–22] vanish identically. This vanishing is simply a result
of the fact that we have a one-node graph so we only need consider weights of topological
length one. Armed with this rule, we can then read off from [29, 30] the zeta functions of
the other two representations. These are

ζ−1
A2

= 1 + t0 − t1 ζ−1
E = 1 + t1 + t21 − t20 . (18)

We could have ignored the symmetry decomposition and simply drawn the six-node Markov
graph of the full problem as shown in figure 2. The vastly increased number of closed loops
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in comparison to figure 1 underlines the advantage of using the symmetry reduction. The
rule for finding the zeta function is to find all non-intersecting closed loops and products of
non-intersecting closed loops. A product ofn non-intersecting closed loops has a relative
sign (−1)n. Carefully enumerating all such loops of the full graph, we find its zeta function
to be

ζ−1 = 1 − 3t20 − 2t31 + 3t40 − 3t20 t
2
1 − t60 + t61 − 3t20 t

4
1 + 3t40 t

2
1 . (19)

This equals the productζ−1
A1
ζ−1
A2
ζ−2
E of the symmetry decomposed zeta functions above. In

addition to the additional complexity of its Markov graph and zeta function, the full zeta
function has the further disadvantage that we do not know to which symmetry class one of
its zeros belongs. However, this exercise is useful in verifying that our use of the results
of [29, 30] is well founded.

Figure 2. The same as figure 1 but without using the symmetry decomposition. There are now
six possible directions and consequently a six-node graph. The six short lines correspond to
weightst0 and the six long lines correspond to weightst1.

The exact resonances of this geometry can be found numerically by finding the zeros
of the determinant of a matrix. This matrix is [28]

Mnm = δnm + Anm (20)

where for theA1 resonances

Anm = Jn(ka)

H
(+)
m (ka)

[
cos

(π
6
(5n−m)

)
H
(+)
n−m(kR)+ (−)m cos

(π
6
(5n+m)

)
H
(+)
n+m(kR)

]
.

(21)

Expressing detM in a cumulant expansion [2, 35], valid becauseA is trace-class [35], yields

detM = 1 + trA− 1
2(trA

2 − (trA)2)+ · · · (22)

where from (21) one obtains [2]

trA =
∞∑

m=−∞

Jm(ka)

H
(+)
m (ka)

(
cos

(
2πm

3

)
H
(+)
0 (kR)+H

(+)
2m (kR)

)
. (23)

We now impose the same constraints as before, namelykR � 1 andR � a so that we can
replaceH(+)

2m (kR) by cos(mπ)H(+)
0 (kR) and

trA ≈ H
(+)
0 (kR)

∞∑
m=−∞

Jm(ka)

H
(+)
m (ka)

(cos(2πm/3)+ cos(mπ)). (24)

Then using (6) and (16) and the asymptotic form ofH
(+)
0 (kR), we find

trA ≈ −u(d(0)+ d(π/3)) = −(t0 + t1). (25)
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We see that truncating the cumulant expansion at the term linear inA and invoking the
relevant approximations gives the same equation for detM = 0 as we derived earlier for
ζ−1 = 0. This is reassuring since it means that we understand the error caused by replacing
H(+)
m (z) by exp(−imπ/2)H (+)

0 (z) in (4) and (24); it is the same as neglecting higher order
terms in the cumulant expansion. As shown in [2, 35], this is equivalent to neglecting
higher order curvature corrections in the cycle expansion. The fact that the semiclassical
approximation can be made on the level of the traces of the scattering kernel trAn (21)
which result from the defining cumulant expansion (22) provides an alternative method to
arriving directly at the zeta functionζ−1

diff . This method does not require closed expressions
for the trace of the Green function, does not invoke the semiclassical relation (15) and, most
importantly, appears in a curvature-regulated form [2, 35]. In particular, one can use this to
read the weightstγ (14) directly from the Green function product

∏n
j=1Gf (ξj+1, ξj , k)dj ,

which is just the closed path equivalent of the open path Green function (10).
The identification between the quantization conditionsζ−1

A1
= 0 and detM = 0 tells us

something else. In [2] it is shown that one can extract the contribution of geometric orbits
and diffractive creeping orbits from trA by invoking Watson contour integration to replace
the sum of equation (23). This means that the diffraction constant contains information about
periodic orbits and creeping. Therefore, even in the limitka � 1, the formalism described
here still applies, the price being the necessity to include many terms in calculating the
diffraction constant (6). We therefore have a uniform picture. For large values ofka, one
invokes geometric and creeping orbits but for intermediate and small values one invokes
the small disk scattering theory elucidated here. These are guaranteed to match smoothly.
Although this was shown explicitly only for two- and three-disk systems, the same will
hold for any number of disks in any geometrical arrangement.

We show the exact and semiclassical results in figure 3 for theA1 andE resonances
together with the approximations using geometric orbits. The resonances are shown in the
complexk plane and are measured in units of 1/R. In figure 3(a) we show the results for
theA1 resonances forR/a = 60 so that the cross-over condition Real{ka} = 1 corresponds
to Real{kR} = 60. The minimum, which is developing at the right of the figure, has a
geometrical interpretation in terms of interference between the two shortest geometrical
orbits in the fundamental domain,t0 and t1 [27, 29]. As promised, the diffractive picture
captures this behaviour. For the highest values ofk, we used 70 partial waves in the
calculation of the diffraction constant (6). If we held the number of partial waves fixed,
the calculation would start to fail for larger values of|kR|. We also include the results
from the theory of geometrical orbits [29] for comparison. The new regime is at the left
of the figure where Real{ka} � 1. There it can be seen that the widths of the resonances
increase logarithmically withkR, a result which we generically expect for diffraction [5, 8].
In those references it is shown that the width of the first resonance scales as log(d) and
sinced scales logarithmically witha, we find that the width of the first resonance (when
measured in units of 1/R) scales as log(log(R/a)), as opposed to the log(R/a) behaviour
predicted by geometric orbits [2]. This means that in the diffractive case, the resonances
are observable even for extremely large values ofR/a.

In figure 3(b) we show the results for theA1 andE resonances forR/a = 600. The
agreement conforms to the discussion of figure 3(a), however the increased value ofR/a
means that none of the resonances shown are in the geometrical regime Real{ka} > 1
so there is no strong interference between the weightst0 and t1. TheA1 resonances have
smaller widths because, to linear order, their zeta function (17) involves two weights, which
are in phase, while the zeta function for theE resonances (18) involves only one weight.
A disadvantage of the three-disk problem for this study is that in the diffractive regime
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Figure 3. (a) The A1 three-disk resonances forR/a = 60 plotted in the complexk plane.
The exact resonances are represented as open circles, the semiclassical diffractive predictions as
vertical crosses and the semiclassical geometric predictions as diagonal crosses. (b) The upper
set of points are theA1 resonances forR/a = 600 while the lower set are theE resonances.
Same symbol convention but we do not include the geometrical orbit predictions. In both cases
the wavenumbers are measured in units of 1/R.

ka � 1 the s-wave term dominates so that the two diffraction constantsd(0) andd(π/3)
are very nearly equal and so too are the weightst0 and t1. The result on the spectrum is
approximately the same as if there were just one weight, a situation which is known to lead
to rather uninteresting spectra [2, 5]. For this reason we were led to study the four-disk
problem which we discuss next.

The four-disk problem shown in figure 4(a) has more structure than the three-disk one
because there are two distinct lengths in the problem; in addition to the side lengthR, there
is the diagonal length

√
2R. Accordingly, we define the factor

v = 1√
8
√

2πkR
exp{i(

√
2kR − 3π/4)} (26)

in analogy tou. In addition, there are now six distinct processes. Starting at any disk we can
go to one of the two near disks and either diffract back withd0 = d(0), diffract to the next
disk with d1 = d(π/2) or diffract diagonally withd2 = d(π/4). Additionally we can head
diagonally across and diffract back withd3 = d(0) or to either one of the other two disks,
again withd4 = d(π/4). This problem has C4v symmetry which has four one-dimensional
representations labelledA1, A2, B1 andB2 and one two-dimensional representation labelled
E [30]. This system has previously been studied semiclassically using periodic geometric
orbits [32].

As before, we want to find the Markov graph of the problem for which we study the
dynamics in the fundamental domain which is one-eighth of the full plane and is shown in
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Figure 4. (a) The configuration space of the four-disk problem with the fundamental domain
indicated. The two available directions are A and B and A’ is the mirror image of A. (b) The
corresponding Markov graph with two nodes A and B and all the interconnecting processes.

figure 4(a). Starting at the half-disk, we can go in one of two directions, which we call
A and B. We want to find all paths which start and end at either A or B. From A we first
reflect off the diagonal wall and upon returning either diffract back which we call 0, diffract
to A’ and then reflect onto A which we call 1 or diffract to B which we call 2. From B
we first travel to the centre and on returning either diffract back which we call 3, diffract
to A which we call 4 or diffract to A’ and reflect to A which we call4̄. This is shown
diagrammatically as a Markov graph in figure 4(b). Note that process 3 is a boundary
orbit which lies on a symmetry axis and can be shown to contribute only to the spectra of
representations which are not odd with respect to reflections through that axis [36].

The weights corresponding to each process involve one geometric arc and one diffraction
so we find

t0 = d0u t1 = d1u t2 = d2u t3 = d3v t4 = t4̄ = d4v. (27)

In general each one of these also has a group theoretic factor depending on the group
representation being considered. Again, we start with the symmetricA1 representation for
which all the characters equal one. Enumerating all closed loops and products of closed
loops on the graph, we read off the zeta function [19] as

ζ−1
A1

= 1 − t0 − t1 − t3 − (2t2t4 − t0t3 − t1t3) (28)

where we have used the equality betweent4 andt4̄. This result involves cycles of topological
lengths one and two. We now have contributions of length two since the graph has
two nodes; however, cycles of length three and higher are absent in (28). We again
note that this is the same expression as the cycle expansion of the four-disk problem
discussed in [30] where we uset01 = t0t1 and additionally invoke the identification between
{t0, t1, t3, t2t4, t2t4, t1t2t4, t0t2t4} in our notation and{t0, t1, t2, t02, t12, t112, t002} in theirs. As
before, we can use this fact to read off the zeta functions of the other representations from
[30],

ζ−1
B2

= 1 + t0 + t1 − t3 + (2t2t4 − t0t3 − t1t3)

ζ−1
A2

= 1 + t0 − t1 ζ−1
B1

= 1 − t0 + t1

ζ−1
E = 1 + t3 + (t21 − t20)+ (2t0t2t4 − t20 t3 − 2t1t2t4 + t21 t3).

(29)
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Figure 5. Top: theA1 resonances of the four-disk problem forR/a = 600. Middle: theB2

resonances. Bottom: theE resonances. (Same symbol and unit convention as in figure 3.)

We are primarily interested in the regionka < 1 for which the diffraction constants
are almost equal (i.e. the s-wave limit) and we see that theA2 and B1 representations
have almost total cancellation and therefore their resonances are comparatively deep in the
complexk plane. These are the representations which are odd with respect to reflections
across the diagonals of the square so process 3 does not contribute. Instead we concentrate
on the representationsA1, B2 and E. In figure 5 we plot the exact positions of these
three representations found using the algorithms of [35, 37] together with the semiclassical
approximations from (28) and (29) forR/a = 600. In all cases, the semiclassical predictions
from the zeta functions work well although it is interesting to note that there is a noticeable
deterioration of the quality for the resonances with large imaginary part. The irreducible
representationsA1 andB2 have richer spectra due to the interferences among the three basic
weights. TheE resonances are given by a zeta function which is dominated by the weight
t3 and thereby shows the characteristic logarithmic behaviour discussed above and observed
in figure 3(a). For larger values ofk, the quadratic terms of (29) become important leading
to more structure in theE spectrum. This structure will eventually develop into the rich
spectrum of scattered resonances predicted by the geometrical orbits.

In this problem, we have altogether defined five weights—however sincet2 andt4 always
occur as a product in the zeta functions, it is more precise to say there are four independent
quantities. On the other hand, it is known that the geometric orbits can be labelled with
just three symbols [30]. (In contrast, for the three-disk problem we had only two weights,
in agreement with the two symbols needed to label geometric periodic orbits.) This is
reminiscent of the approximations of the transfer operator based on so-calledT matrices
[38] which lead to transcendantal quantization equations like (29) but in terms of classical
trajectories. Increasing the dimension of theT matrices induces more complicated equations
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in terms of which the quantization is more exact. That approximation is based on assuming
certain matrix elements (weights in our language) are approximately multiplicatively related
and so drop out of the equations—as happens exactly for diffraction. The structural similarity
between these results is presumably based on the underlying structure of finite Markov
graphs which are used by us and are implicit in the work of [38].

In conclusion, we have discussed a form of discontinuity which is amenable to discussion
in terms of diffraction, that of small disks. Since the effect of a disk vanishes as the disk
radius goes to zero, we must consider disks of some fixed size. Doing so introduces a
length scale in the problem such that ifka � 1 one can use standard geometrical orbits.
However in the domainka � 1 a qualitatively new physical picture is necessary. The
formalism we discuss here incorporates both limits but at the price of having to include
many partial waves whenka � 1. We have tested this theory in systems consisting of three
and four disks arranged symmetrically on the plane. The formalism of Markov graphs and
zeta functions applies equally well to any system in which there exist objects which can
be approximated as point singularities, including point scatterers mentioned above [16] and
Aharonov–Bohm flux lines [39]. These systems allow a finite approximation based on zeta
functions to give their scattering resonances and as such are formally useful in testing the
formalism. However, the arguments developed here apply equally well to bound systems.
Putting a small disk or other singularity inside a billiard system introduces diffractive paths
which appear in the Fourier transform of the spectrum [40] in a characteristic way, just as
with edge diffraction [6, 9].
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